

BOLETIM DE PESQUISA DO PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA - UNOESTE

Volume 03 - 2022

DESEMPENHO AGRÔNOMICO DO GERÂNIO AROMÁTICO NAS CONDIÇÕES EDAFOCLIMÁTICAS DE PRESIDENTE PRUDENTE-SP

Milene Izilda Coelho, Vilma Aparecida Polidório Caseiro, Mateus Modesto Bosisio, Elisa Ramos Melo, Ana Cláudia Pacheco

PROBLEMÁTICA

Plantas aromáticas são aquelas que produzem óleos essenciais (OEs) empregados em diferentes seguimentos industriais. A região do Oeste Paulista apresenta condições de solo e clima favoráveis ao cultivo de diferentes plantas produtoras de OEs, como o capim limão, a citronela, o vetiver, o alecrim e o gerânio. Tais espécies se apresentam como uma excelente alternativa de renda para a agricultura familiar, pois possuem a vantagem adicional de se adaptar a solos degradados, apresentar fácil manejo e permitir várias colheitas por ano. Conhecer a adaptabilidade das espécies nas diferentes condições edafoclimáticas do país é muito importante para que possamos melhor descrever as condições técnicas ideias para o cultivo comercial das plantas aromáticas, fortalecimento a sua cadeia produtiva. Neste sentido o objetivo deste trabalho foi avaliar o desempenho agrônomico do gerânio aromático em plantio de verão no município de Presidente Prudente/SP.

CONHECIMENTO PRÉVIO

O gerânio aromático (*Pelargonium graveolens* L. – família Geraniaceae) é um arbusto ramificado, originário da África do Sul. Suas folhas produzem óleo essencial com fragrância única de rosas, devido à presença majoritária dos compostos citronelol e geraniol (MISRA et al., 2005). O OE de gerânio é comercializado principalmente para indústrias de perfumaria e cosméticos, mas também possui ações terapêuticas no tratamento de sintomas da menopausa, problemas de pele e de ansiedade (RABELO, 2014).

O teor de óleo essencial nas folhas do gerânio é bastante baixo quando comparado às outras plantas aromáticas (cerca de 0,08 a 1%), fazendo com que essa espécie apresente baixo rendimento de destilação e custo elevado do seu óleo essencial (em torno de R\$ 2.000,00 o litro), com crescente demanda nos mercados nacional e internacional (DO et al., 2015).

A produtividade do gerânio aromático é calculada com base na formação de biomassa (folhas + ramos) e podem ser realizadas até quatro colheitas por ano, dependendo do local de cultivo e condições climáticas (FABRI e ANEFALOS, 2021). Entretanto, sucessivos cortes podem diminuir o rendimento da planta ao longo do ano. A destilação do óleo essencial é realizada utilizando-se as plantas frescas recém-colhidas. Diferentes estudos demonstraram a existência de correlação positiva entre o aumento de biomassa foliar e a produção de óleo essencial em gerânio (ALI et al., 2018; BLANK et al., 2012; MISRA et al., 2005).

BOLETIM DE PESQUISA DO PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA - UNOESTE

Volume 03 - 2022

DESCRIÇÃO DA PESQUISA

O experimento foi conduzido em área experimental localizada no Horto de Plantas Aromáticas e Medicinais da Universidade do Oeste Paulista – UNOESTE, em Presidente Prudente- SP.

O solo da área experimental é um Argissolo Vermelho Distroférrico de textura média, com relevo suave ondulado. De acordo com a classificação de Köppen, o clima da área é do tipo Cwa, com temperatura média anual de 25 °C e precipitação média anual de 1400 a 1500 mm, distribuída em dois períodos distintos, de outubro a março e de abril a setembro.

As mudas de gerânio foram obtidas a partir de estacas de 10 cm retiradas de plantas matrizes do Horto, nas porções apicais dos ramos. As estacas foram colocadas em sacos plásticos contendo a mistura solo: substrato comercial (Bioterra®) na proporção 1:1, sendo mantidas por 45 dias em viveiro com tela de 50% de sombreamento para o pegamento das mudas.

O experimento foi instalado no mês de novembro de 2021, para avaliar o comportamento produtivo no plantio de verão. A análise de solo da área (Tabela 1) indicou a não necessidade de se realizar a calagem. No momento do plantio foi realizada a adubação orgânica com húmus de minhoca (100 gramas por planta, colocadas na cova). A primeira colheita foi realizada em fevereiro de 2022 (3 meses após o plantio) e a segunda colheita em maio (3 meses após a primeira colheita), de acordo com BLANK et al. (2012). Após a primeira colheita repetiu-se a aplicação do adubo orgânico. Foi utilizada irrigação por aspersão durante todo o período experimental, sendo acionada apenas durante 30 minutos nos dias em que não havia precipitação.

Tabela 1. Análise de fertilidade do solo da área experimental.

рН	M.O.	C total								CTC	V
(CaCl ₂)	(g	dm ⁻³)		g am °) 				- (mmo	oic am " , -)	- (%) -
6,7	22,5	****	72,2	4,0	11,6	2,3	113,2	29,9	145,4	157,0	92,0

Foi adotado delineamento experimental de blocos ao acaso. As parcelas experimentais foram constituídas por 6 linhas de lavoura com 5 m de comprimento, com área total de 12,5 m². O espaçamento adotado foi de 0,50 m x 0,50 m (entre plantas dentro de cada linha e entre linhas) e a unidade experimental foi constituída por 60 plantas no total.

Para as avaliações de colheita foram coletadas as 16 plantas centrais de cada linha (48 plantas no total, divididas em 6 repetições de 8 plantas). Em cada colheita foram avaliados os seguintes parâmetros: a) altura de plantas (avaliadas desde a base até a última folha do ramo mais alto), b) número de ramos por planta, c) número de folhas por planta e d) massa fresca de ramos + folhas (g planta-1). Uma terceira e última colheita está prevista para agosto de 2022. Os dados foram comparados pelo cálculo das médias e desvio padrão.

BOLETIM DE PESQUISA DO PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA - UNOESTE

Volume 03 - 2022

● ● /unoeste

Tabela 2. Médias de temperatura (máxima, mínima e média) e precipitação acumulada durante o período experimental.

Período entre plantio e colheitas			Temp max	Temp min	Temp med	Precipitação
				(°C)		(mm)
1	(10/11/2021	a	32,43	21,3	26,6	605
16/2	2/2022)					
2 (17/2 a 19/5/2022)			29,5	19,6	23,8	435

RESULTADOS E DISCUSSÃO

Ao compararmos as duas colheitas realizadas até o momento observa-se que as plantas não apresentaram diferença expressiva quanto à altura. Porém, na primeira colheita verifica-se que as plantas apresentaram maior número de ramos e maior número de folhas (Tabela 2) em relação à segunda colheita. Consequentemente, houve maior produção de biomassa da parte aérea e maior produtividade para a primeira colheita (Tabela 3). Os valores de produção e produtividade encontram-se dentro da média esperada para a cultura (RABELO et al., 2014).

Tabela 3. Médias de altura, número de ramos e número de folhas em plantas de gerânio aromático (*Pelargonium graveolens*) cultivadas em Presidente Prudente/SP.

N° da	Altura de	Número de	Número de
colheita	plantas (cm)	ramos	folhas
1	$47,33 \pm 5,72$	$42,88 \pm 12,46$	$542,95 \pm 125,66$
2	$52,69 \pm 3,47$	$39,07 \pm 10,18$	$341,88 \pm 94,32$

Tabela 4. Massa fresca (folhas + ramos) e produtividade de plantas de gerânio aromático (*Pelargonim graveolens*) cultivadas em Presidente Prudente/SP.

N° da	Massa fresca	Produtividade
colheita	(g planta ⁻¹)	(kg ha ⁻¹)
1	900 ± 222	3.200
2	532 ± 170	2.100

As diferenças observadas entre as colheitas realizadas até o momento provavelmente foram causadas pelas oscilações de temperatura e precipitação durante o período experimental. Espécies aromáticas, como o gerânio, são muito sensíveis e responsivas às condições ambientais (RABELO et al., 2015); as quais influenciam diretamente o metabolismo da planta (BLANCK et al., 2012). O período de tempo compreendido desde o plantio até a primeira colheita apresentou maiores valores de temperatura (mínima, máxima e média) e maior precipitação acumulada do que o período seguinte, compreendido entre a primeira e segunda colheita (Tabela 4). O gerânio

BOLETIM DE PESQUISA DO PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA - UNOESTE

Volume 03 - 2022

aromático é uma planta típica de clima temperado, subtropical e mediterrânico; sendo caracterizado como uma espécie altamente maleável (FABRI e ANEFALOS, 2021). Entretanto, estudos afirmam que esta espécie apresenta maior crescimento vegetativo e capacidade de rebrota após as colheitas sucessivas quando em condições de elevada umidade do solo (EIASU et al., 2008).

Considerando-se um rendimento médio de óleo essencial em 0,08% (de 100 kg de massa fresca da planta são extraídos 80 ml de óleo essencial) e uma massa total acumulada de 5,3 toneladas por hectare (somatória das duas colheitas realizadas até o momento), seriam obtidos aproximadamente 4,24 litros de óleo essencial.

Figura 1. Folha (A) e flor (B) do gerânio aromático (*Perlargonium graveolens*).

APLICAÇÃO PRÁTICA

O gerânio aromático apresenta boa adaptabilidade às condições edafoclimáticas de Presidente Prudente, apresentando maior produtividade quando cultivado em épocas de maior temperatura e precipitação.

LITERATURA CITADA

ALI, E. F.; HASSAN, F. A. S.; ELGIMABI, M. Improving the growth, yield and volatile oil content of *Pelargonium graveolens* L. Herit by foliar application with moringa leaf extract through motivating physiological and biochemical parameters. **South African Journal of Botany**, v. 119, p. 383-389, 2018.

BLANK, A. Espaçamento de plantio e intervalos de colheita na biomassa e no óleo essencial de gerânio. **Horticultura Brasileira**., v. 30, n. 4, 2012

DO, T.K.T.; HADJI-MINAGLOU, F.; ANTONIOTTI, S.; et al. Authenticity of essential oils. **Trends in Analytical Chemistry,** v. 66, p. 146-157, 2015.

EIASU, B. K., STEYN, J. M., & SOUNDY, P. Growth and essential oil yield of rose-scented geranium (*Pelargonium capitatum*× *P. radens* 'Rose') as affected by withholding irrigation at different times during regrowth. **New Zealand Journal of Crop and Horticultural Science**, *v.36*, n.4, p. 285-294, 2008.

BOLETIM DE PESQUISA DO PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA - UNOESTE

Volume 03 - 2022

FABRI, E.; ANEFALOS, L.C. Plantas Aromaticas: Contribuições científicas e tecnológicas para a cadeia produtiva de óleos essenciais. Campinas: Insituto Agronômico, 2021.

MISRA, A. et al. Zn-acquisition and its role in growth, photosynthesis, photosynthetic pigments, and biochemical changes in essential monoterpene oil (s) of *Pelargonium graveolens*. **Photosynthetica**, v. 43, n. 1, p. 153-155, 2005.

RABELO, P.G. Produção de gerânio (*Pelargonium graveolens*) e óleo essencial em sistemas de cultivos e adubações com plantas oriundas de cultivo in vitro. Dissertação de Mestrado. Universidade Federal de Uberlândia. Uberlândia: MG, 2014.