www.cbagro2023.com.br

03 a 06 de Outubro de 2023 | Natal - RN

CBAGRO 2023

XXII Congresso Brasileiro de Agrometeorologia

VI ECLIM | X RLA

A Agrometeorologia e a Agropecuária: Adaptação às Mudanças Climáticas

PLANILHA PARA CÁLCULO DE EVAPOTRANSPIRAÇÃO E BALANÇO HÍDRICO SEQUENCIAL

Edson Carlos Hitoshi Yamamoto 1; Alexandrius de Moraes Barbosa 2

¹Discente. Presidente Prudente, São Paulo.. Universidade do Oeste Paulista? Unoeste Clima: Centro de Monitoramento e Estudos Climáticos e de Previsão do Tempo; ²Docente. Presidente Prudente, São Paulo.. Universidade do Oeste Paulista? Unoeste Clima: Centro de Monitoramento e Estudos Climáticos e de Previsão do Tempo

RESUMO

A determinação da evapotranspiração de referência e o balanço hídrico sequencial é de grande importância no planejamento e monitoramento agrometeorológico. No entanto, o uso dessas informações têm sido pouco utilizadas devido à complexidade dos cálculos. Portanto, a elaboração de planilhas eletrônicas para cálculo da evapotranspiração e do balanço hídrico facilita ao acesso dessas informações, contribuindo para a maximização da produção agropecuária com melhor conservação dos recursos naturais. O objetivo do trabalho foi elaborar uma planilha automática para cálculo da evapotranspiração de referência e/ou de cultura e do balanço hídrico sequencial. A planilha foi desenvolvida utilizando-se da ferramenta do Microsoft Excel 365® e foi organizada em três partes: (i) tela principal; (ii) dados de entrada; (iii) resultados e figuras. Foram utilizadas três metodologias para o cálculo da evapotranspiração (Thornthwaite-Modificado; Priestley e Taylor; e Penman-Monteith FAO-56. A planilha para cálculo da evapotranspiração e do balanço hídrico sequencial permitirá o acesso a informações agrometeorológicas de grande importância, contribuindo para um melhor manejo e planejamento agropecuário. Ainda, o usuário terá a possibilidade de escolher o melhor método para cálculo da evapotranspiração de referência e de cultura em função da disponibilidade de dados meteorológicos.

PALAVRAS-CHAVE: Água Disponível; Radiação Solar; Precipitação; Déficit Hídrico;

INTRODUÇÃO

A evapotranspiração de referência (ETo) é a perda de água por evaporação e transpiração de uma área extensa com vegetação de porte baixo que cobre completamente a superfície do solo, em crescimento ativo e sem restrição hídrica (BERGAMASCHI; BERGONCI, 2017). A ETo é utilizada em diversos estudos agrometeorológicos, tais como em modelos de produção, zoneamentos agroclimáticos, no manejo e no dimensionamento de sistemas de irrigação, sendo também, um importante parâmetro para elaboração do balanço hídrico (CONCEIÇÃO, 2006).

Através do balanço hídrico climatológico de Thornthwaite e Mather (1955) é possível determinar o regime hídrico de um local sem a necessidade de medidas diretas das condições do solo. Para a sua elaboração deve-se definir o armazenamento máximo no solo (CAD, Capacidade de Água Disponível), a medida de precipitação e a estimativa da evapotranspiração. Com essas informações é possível calcular a deficiência e o excedente hídrico de cada período avaliado (PEREIRA, 2005).

O balanço hídrico climatológico é mais frequentemente utilizado em escala mensal, no entanto, o balanço hídrico também pode ser utilizado para o acompanhamento de água no solo e tempo real, sendo que este tipo de balanço recebe o nome de balanço hídrico sequencial e pode ser elaborado em escala menores (diária, semanal, decendial) (THORNTHWAITE; MATHER, 1955; PEREIRA et al., 2007).

Dessa maneira a determinação da evapotranspiração de referência e do balanço hídrico sequencial é de grande importância no planejamento e monitoramento agrometeorológico, no entanto, essas informações não têm sido utilizadas com frequência em estudos de sistemas agropecuários, e principalmente, no dia a dia das propriedades rurais, em função dos complexos cálculos. Portanto, a elaboração de planilhas eletrônicas para cálculo da evapotranspiração e do balanço hídrico facilita ao

acesso dessas informações, contribuindo para a maximização da produção agropecuária com melhor conservação dos recursos naturais.

OBJETIVOS

O objetivo do trabalho foi elaborar uma planilha automática para cálculo da evapotranspiração de referência e/ou de cultura e do balanço hídrico sequencial.

MATERIAL E MÉTODOS

A "Planilha para Cálculo de Evapotranspiração e Balanço Hídrico Sequencial Versão 2023.01" foi desenvolvida utilizando-se da ferramenta do Microsoft Excel 365®. O usuário poderá utilizar os dados de duas maneiras: Ano Comum (01 de janeiro a 31 de dezembro) ou Ano Safra (01 de julho a 30 de junho do ano subsequente). A planilha foi organizada em três partes: (i) tela principal; (ii) dados de entrada; (iii) resultados.

Tela principal e dados de entrada

Na tela principal, o usuário deverá inserir os seguintes dados: localidade, latitude, capacidade de água disponível do solo (CAD, mm), temperatura média anual histórica do local (°C), altitude (m), parâmetro de Priestley e Taylor e os valores do coeficiente de cultura (Kc) mensal caso o usuário opte por calcular a evapotranspiração de cultura (ETc).

Unoeste Clima	- Centro de Monitorar	nento e Estudos Ci	imáticos e de Previsão do Tempo - Universidade	do Oeste Paulista - President	e Prudente/SP	
	Planilha pa	a Cálculo	de Evapotranspiração e E	Balanço Hídrico		
lococko		Métodos: Pen	ylor	Hooote		
Inoeste	Autores: Eng	. Edson Carlos F	de Moraes Barbosa	Unoeste		
CA	MPO PARA PREENC	CHECK LIST DADOS				
Dados diários em ANO COM	IJM (Jan a Dez)	Thornthwaite				
- Dudos didnos em Arto Com	om (our a oce)	☑ Dados Diários - Temperatura Média				
Nome do Local		☑ Dados Diários - Precipitação				
Presidente Prud	dente			☑ CAD Solo		
				☑ Latitude		
Latitude CAD	do Solo			☑ Altitude		
-22	60			Penr	nan-Monteith	
				☑ Dados Diários - Temp	eratura Média	
Dados diários (Temp. Min., Tem	np. Máx., Temp. Méd., Prec	pitação, Umidade, Vel	ocidade Vento, Radiação Solar e Radiação Solar (Ausên	☑ Dados Diários - Temp	eratura Maxima	
	Clique aqui par	☑ Dados Diários - Temperatura Minima				
	endae ada ha	11132111 02 00003		☑ Dados Diários - Preci		
				☑ Dados Diários - Veloc ☑ Dados Diários - Umid		
IAN 1 MAR 1	MAI 1	de Cultura	SET 1 NOV 1			
JAN I MAR I	MAI I	101 1	SEI I NOV I	☑ CAD Solo	iyau-auiai	
FEV 1 ABR 1	JUN 1	AGO 1	OUT 1 DEZ 1	☑ Eluxo de calor no solo		
7011				☑ Latitude		
				☑ Altitude		
Temperatura Média Anual (C) Altitude (m)		Coeficiente de reflexão da cultura (albedo)	☑ Coeficiente de reflexă	o da cultura (albedo)	
24.4	4					

Figura 1: Imagem da tela principal da planilha para cálculo da evapotranspiração e balanço hídrico.

Na tela dados de entrada (Figura 2), o usuário deverá inserir os valores diários conforme o período selecionado (ano comum ou ano safra), dos seguintes parâmetros: temperatura máxima, mínima e média (°C); precipitação (mm); umidade relativa média (%); velocidade do vento (m/s) e radiação solar global (MJ m⁻²).

Data	Temperatura Máxima	Temperatura Minima	Tempertura Média	Precipitação	Umidade	Velocidade Vento (m/s)	Radiação Solar (MJ/m²/dia)	Clique Aqui para voltar ao Menu
01/01/2022	32,5	21,2	26,2	0,0	53,2	0,3	23,6	
02/01/2022	32,1	22,9	26,5	19,2	53,5	0,6	20,9	
03/01/2022	33,8	22,6	26,9	0,0	54,1	0,3	22,0	
04/01/2022	32,1	22,8	25,7	4,4	56,6	0,9	15,4	
05/01/2022	33,0	22,2	26,3	3,2	55,6	0,7	17,5	
06/01/2022	32,1	21,6	24,7	22,6	57,0	0,2	16,8	
07/01/2022	29,1	21,6	24,8	0,0	56,7	1,6	16,8	
08/01/2022	30,8	19,6	24,8	0,0	58,0	1,8	21,1	
09/01/2022	30,0	19,2	23,5	0,0	56,9	2,1	18,4	
10/01/2022	31,8	18,4	23,4	2,6	58,3	1,3	25,2	
11/01/2022	30,3	19,2	23,8	0,0	60,1	0,7	24,1	
12/01/2022	28,2	19,3	23,3	5,8	63,3	0,5	14,2	
13/01/2022	29,4	21,7	25,1	0,6	68,8	0,6	15,2	
14/01/2022	34,1	23,2	27,6	17,6	65,3	0,7	23,1	
15/01/2022	34,1	23.6	28,4	0.2	68,8	0.4	19,2	

Figura 2: Imagem da tela de inserção de dados para cálculo da evapotranspiração e balanço hídrico.

Cálculos de evapotranspiração de referência e balanço hídrico

Para o cálculo da evapotranspiração de referência, foram consideradas três metodologias, quem podem ser utilizadas conforme as variáveis meteorológicas disponíveis ao usuário: método de Penman-Monteith FAO-56 (ALLEN et al., 1998), método de Priestley e Taylor (1972) e método de Thornthwaite-Modificado (CAMARGO et al., 1999). As equações utilizadas no estudo foram realizadas conforme Fernandes et al., (2010). Caso o usuário insira os valores do coeficiente de cultura, a planilha irá calcular a evapotranspiração de cultura (ETc = ETo * Kc).

Para o cálculo do balanço hídrico sequencial foi utilizada a metodologia de Thornthwaite e Mather (1955) de acordo com Pereira (2005) considerando os três métodos de ETo mencionados acima.

Resultados e Figuras

Os dados finais foram organizados em decêndios, sendo considerada a média do período para os parâmetros de temperatura, velocidade do vento, umidade relativa e radiação, e a soma do período para a precipitação e evapotranspiração de referência e/ou de cultura.

Na tela resultados, o usuário poderá observar os dados referentes ao cálculo do balanço hídrico conforme as três metodologias de ETo utilizadas no trabalho. O usuário poderá observar a Figura do balanço hídrico sequencial em decêndios, em que, a área vermelha representa o déficit hídrico (mm) e a área azul o excesso hídrico (mm) Figura X. Ainda, o usuário poderá observar a Figura da ETo diária (mm), que representa a média do decêndio.

O acesso a planilha pode ser solicitado através do e-mail clima@unoeste.br.

RESULTADOS E DISCUSSÃO

Através da planilha o usuário poderá ter acesso a informações de evapotranspiração e balanço hídrico sequencial organizados em decêndios (Figura 3). Ainda, já será gerado os valores acumulados do déficit e do excesso de água para o período em estudo. Outra vantagem, é que a planilha permite o usuário escolher o método de cálculo da evapotranspiração (Thornthwaite-Modificado; Priestley e Taylor; e Penman-Monteith FAO-56) em função dos dados meteorológicos disponíveis.

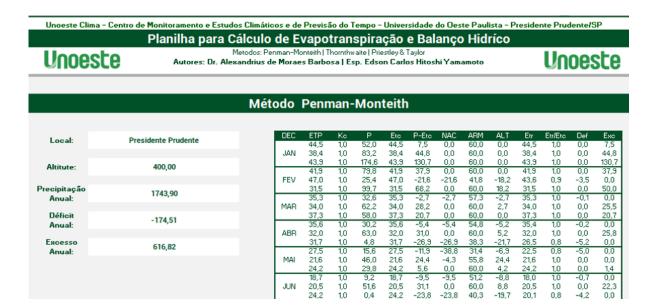
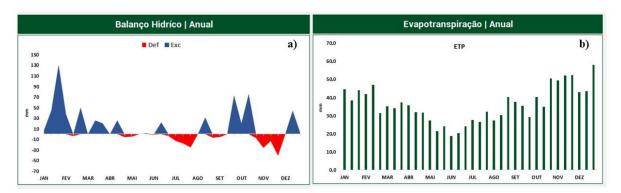



Figura 3: Imagem dos resultados da evapotranspiração e balanço hídrico sequencial.

Além dos valores, a planilha irá gerar os gráficos de evapotranspiração e do balanço hídrico sequencial para cada tipo de evapotranspiração referencial (Figura 4). A presença dos gráficos, permite uma melhor interpretação de como foram as condições climáticas para a região e para o período em estudo. Importante ressaltar que caso o usuário insira os dados de coeficiente de cultura, a planilha automaticamente irá calcular a evapotranspiração de cultura, bem como, o balanço hídrico sequencial de cultura.

Figura 4: Imagem dos gráficos gerados pela planilha. (a) balanço hídrico sequencial; (b) evapotranspiração.

CONCLUSÃO

A planilha para cálculo da evapotranspiração e do balanço hídrico sequencial permitirá o acesso a informações agrometeorológicas de grande importância, contribuindo para um melhor manejo e planejamento agropecuário. Ainda, o usuário terá a possibilidade de escolher o melhor método para cálculo da evapotranspiração de referência e de cultura em função da disponibilidade de dados meteorológicos.

REFERÊNCIAS

ALLEN, R. G.; PEREIRA, L.; RAES, D.; SMITH, M. Crop evapotranspiration: guidelines for computing crop water requirements. Rome: FAO, 1998. (FAO. Irrigation and Drainage Paper, 56).

BERGAMASCHI, H.; BERGONCI, J.I. **As plantas e o clima: princípios e aplicações**. Guaíba:Agrolivros, 2017, 352p.

CAMARGO, A.P.; MARIN, F.R.; SENTELHAS, P.C.; PICINI, A.G. Ajuste da equação de Thornthwaite para estimar a evapotranspiração potencial em climas áridos e super-úmidos, com base na amplitude térmica diária. **Revista Brasileira de Agrometeorologia**, Santa Maria, v.7, p. 251-257, 1999.

CONCEIÇÃO, M. A. F. Roteiro de cálculo da evapotranspiração de referência pelo método de **Penman-Monteith-FAO**. Circular Técnica 65, Embrapa-RS, 2006.

FERNANDES, D. F.; HEINEMANN, A. B.; DA PAZ, R. L.; AMORIM, A. O. **Evapotranspiração** - **Uma Revisão sobre os Métodos Empíricos**. Documentos 263, Embrapa-GO, 2010.

PEREIRA, A. R. Simplificando o balanço hídrico de Thornthwaite-Mather. **Bragantia**, Campinas, v.64, p.311-313, 2005.

PEREIRA, A. R.; ANGELOCCI, L. R.; SENTELHAS, P. C. **Meteorologia Agrícola**. Piracicaba/SP, Edição Revista e Ampliada, ESALQ/USP, 2007.

PRIESTLEY, C. H. B.; TAYLOR, R. J. On the assessment of surface heat flux and evaporation using large-scale parameters. **Monthly Weather Review**, Boston, v. 100, p. 81-92, 1972.

THORNTHWAITE, C. W.; MATHER, J. R. The water balance. **Publications in Climatology**. New Jersey: Drexel Institute of Technology. 1955.