

BOLETIM DE PESQUISA DO PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA - UNOESTE

⊕
 ■
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □

© @ppgagrounoeste

VOLUME 6 - 2024

RESPOSTA DE CULTIVARES DE FEIJÃO À INOCULAÇÃO COM Rhizobium tropici EM DOIS AMBIENTES DE PRODUÇÃO: IRRIGADO E SEQUEIRO

Tiago Aranda Catuchi¹, Alexandrius de Moraes Barbosa¹ e Wellington Eduardo Xavier Guerra¹

Docente do curso de Agronomia – Universidade do Oeste Paulista; E-mail: tiago@unoeste.br

PROBLEMÁTICA

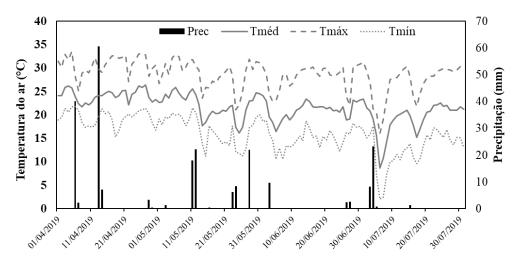
A cultura do feijão possui grande importância para agricultura e para alimentação da população brasileira por ser uma excelente fonte de proteína. A área total cultivada com feijão no Brasil é de aproximadamente 2,8 milhões de ha, com produção de 3,2 milhões de t de grãos, sendo o feijão comum (*Phaseolus vulgaris* L.) a principal espécie cultivada (CONAB 2024).

O nitrogênio (N) é o elemento requerido em maior quantidade pelas plantas e, geralmente, o nutriente mais limitante para a produtividade das culturas. Assim, o uso de adubação nitrogenada na cultura do feijão é uma prática utilizada para se obter rentabilidade produtiva, mas é responsável por elevar os custos da produção agrícola, uma vez que parte do total aplicado pode ser perdido por diferentes vias como lixiviação e volatilização. Para contornar esta situação, práticas mais sustentáveis têm sido difundidas na cultura do feijão-comum, a exemplo da inoculação da planta com bactérias do gênero *Rhizobium* que promovem fixação simbiótica de nitrogênio (FBN).

CONHECIMENTO PRÉVIO

A resposta da cultura do feijão-comum a inoculação com bactérias do gênero *Rhizobium* podem variar em razão do cultivar de feijão a ser utilizado e as condições climáticas durante o ciclo da cultura. Segundo Coelho et al (2021) cultivares que apresentam maior ramificação da parte aérea e maior área foliar, além daquelas que apresentam uma resposta melhor e mais rápida aos estímulos que dão início à formação dos nódulos, geralmente, demonstram maior eficiência de FBN.

DESCRIÇÃO DA PESQUISA


Os experimentos foram conduzidos durante o ano de 2019 na Fazenda Experimental da Universidade do Oeste Paulista, localizada em Presidente Bernardes, estado de São Paulo (latitude 22º 17'05.04" S, longitude 51º 40'40.22" W e altitude de 396 m). As condições climáticas durante a condução do experimento estão disponíveis na Figura 1.

O solo da área experimental foi classificado como Argissolo Vermelho distroférrico (Santos et al. 2013). As características químicas das áreas experimentais estão apresentadas na Tabela 1.

O trabalho foi composto por dois experimentos, sendo em condições de sequeiro (Exp. I) e irrigado (Exp. II). Em ambos os experimentos foi utilizado o delineamento experimental em blocos casualizados, com quatro repetições, em esquema fatorial de 4 x 2 e 6 x 2, respectivamente, para os Exp. I e II, com tratamentos compostos por cultivares

VOLUME 6 - 2024

de feijão-comum e dois tratamentos, com e sem inoculação com *Rhizobium tropici*. A inoculação com *R. tropici* foi realizada com aplicação de 6 doses (480 mL ha⁻¹) de inoculante líquido aplicado direto no sulco de semeadura com o auxílio de injetor de inoculante acoplado à semeadora.

Figura 1. Temperatura média, máxima e mínima do ar (°C) e precipitação (mm) durante o período experimental (abril a julho de 2019, Presidente Bernardes-SP).

Tabela 1. Características químicas do solo nas profundidades de 0-0,20 e 0,20-0,40 m, determinadas antes da instalação dos experimentos.

direct du liistain	340 400 tilperi								
Profundidade	pH (CaCl ₂)	M.O.	P (resina)	H+Al	K^+	Ca ²⁺	Mg^{2+}	CTC	V
m		g dm ⁻³	mg dm ⁻³		1	nmol _c dı	m ⁻³		%
			—— Experime	ento I					
0,0-0,20	5,8	18,8	17,6	18	1,6	16,9	9,3	45,8	60,7
0,20-0,40	5,7	14,2	22,9	19,8	1,3	12,6	5	38,7	48,8
			— Experime	nto II —					
0,0-0,20	5,6	20,9	31,8	15,1	2,6	13,8	8	39,5	61,8
0,20-0,40	5,0	12,6	6,2	18,8	1,2	7,6	5,6	33,2	43,4

Cada unidade experimental foi constituída por sete fileiras de 6 m de comprimento, com espaçamento de 0,45 m entre fileiras. Para as avaliações foram consideradas as duas fileiras centrais, desprezando-se 0,5 m nas extremidades de cada fileira de avaliação.

As cultivares de feijão foram semeadas em solo manejado sobre Sistema Plantio Direto com uma semeadora-adubadora (Semeato, modelo SHM 15/17) que foi regulada para distribuir 15 sementes de cada cultivar de feijão por metro de sulco. Na adubação de semeadura foram aplicados 300 kg ha⁻¹ do fertilizante formulado 04-30-10. Ambos os experimentos (Exp. I e Exp. II) foram semeados no dia 12/04/2019 e colheita realizada no dia 30/07/20219.

Para o Exp. I a cultura foi irrigada durante todo o ciclo, com lâminas de irrigação entre 7 e 10 mm a cada 4 dias, sendo aplicadas através do método de irrigação por aspersão (sistema convencional).

BOLETIM DE PESQUISA DO PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA - UNOESTE

© @ppgagrounoeste

VOLUME 6 - 2024

Aos 30 dias após a semeadura foi realizada a adubação de cobertura com aplicação de 48 kg ha⁻¹ de K₂O (cloreto de potássio) e 35 kg ha⁻¹ de N (sulfato de amônio).

O estudo estatístico foi realizado pela análise de variância e as médias foram comparadas pelo teste de Tukey a 5% de probabilidade.

RESULTADOS E DISCUSSÃO

No ambiente sequeiro (Tabela 2), não houve interação entre os cultivares e inoculação. O maior número de vagens por planta foi observado para o cultivar BRS Requinte, o número de grãos por vagem foi no cultivar BRS Pérola, já a maior massa de 100 grãos foi obtida pelo cultivar BRS Requinte.

Tabela 2. Componentes da produção e produtividade de cultivares de feijão em razão da presença ou ausência da inoculação com *Rhizobium tropici*, no sistema sequeiro. (Presidente Bernardes, Ano Agrícola 2019).

Tratamentos	N° de vagens por planta	N° de grãos por vagem	Massa de 100 Grãos (g)	Produtividade de grãos (kg ha ⁻¹)
Cultivar (CV)				
BRS Requinte	14,2a	4,0ab	21,3b	1089,6a
BRS Pérola	6,4b	4,4a	24,2a	590,6b
BRS Estilo	7,2b	3,8ab	24,3a	984,2a
TAA Dama	8,4b	3,7b	24,5a	978,2a
Inoculação (I)				
Sem	8,73a	3,97a	23,49a	815,7b
Com	9,34a	3,98a	23,68a	1.005,5a
Interação CV x I	ns	ns	ns	ns
CV(%)	16,6	12,0	7,3	18,5

⁽¹⁾ Medias seguidas de letras na coluna, dentro de cada fator, diferem entre si pelo teste Tukey a 5% probabilidade. (ns) Não significativo.

Em relação a produtividade de grãos para o ambiente sequeiro (Tabela 2), a menor produtividade foi do cultivar BRS Pérola. Neste mesmo ambiente de produção, em relação a inoculação, houve efeito para a variável produtividade grãos, com maiores valores (1.005 kg ha⁻¹) para o tratamento que recebeu a inoculação com *Rhizobium tropici* via sulco de semeadura.

Nas condições de ambiente irrigado (Tabela 3), não houve interação entre os cultivares e inoculação. O maior número de vagens por planta foi observado no cultivar BRS Pérola, sendo que a massa de grãos foi superior para o cultivar ANFC 09. Houve ausência de resposta das variáveis à inoculação no ambiente irrigado.

BOLETIM DE PESQUISA DO PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA - UNOESTE

() X O @Unoeste

@ppgagrounoeste

VOLUME 6 - 2024

Tabela 3. Componentes da produção e produtividade de cultivares de feijão em razão da presença ou ausência da inoculação com Rhizobium tropici, no sistema irrigado. (Presidente Bernardes, Ano Agrícola 2019).

Tratamentos	N° de vagens por planta	N° de grãos por vagem	Massa de 100 Grãos (g)	Produtividade de grãos (kg ha ⁻¹)
Cultivar (CV)				
BRS Requinte	20,7ab	5,2a	23,2b	2.746,1a
BRS Pérola	22,2a	4,4a	28,4ab	2.785,5a
BRS Estilo	17,4b	4,4a	26,9ab	2.804,8a
TAA Dama	19,0ab	4,9a	24,8ab	2.651,7a
AFNC 09	17,5b	5,1a	29,5a	2.164,7a
AFNC 05	18,2b	4,5a	26,8ab	3.038,0a
Inoculação (I)				
Sem	19,8a	4,6a	26,4a	2.761,6a
Com	18,6a	4,9a	26,8a	2.635,3a
Interação CV x I	ns	ns	ns	ns
CV(%)	11,9	12,0	13,3	23,4

⁽¹⁾Medias seguidas de letras na coluna, dentro de cada fator, diferem entre si pelo teste Tukey a 5% probabilidade. (ns) Não significativo.

A produtividade de grãos foi 66% menor no ambiente sequeiro (910 kg ha⁻¹) em relação ao ambiente irrigado (2.698 kg ha⁻¹), destacando a importância do planejamento com irrigação para cultivo de segunda safra em culturas com alta sensibilidade ao estresse hídrico, como feijão-comum.

Durante períodos de seca, o feijão pode apresentar redução na taxa de crescimento das raízes e formação de grãos, resultando em perdas significativas na colheita. Para mitigar os efeitos do estresse hídrico, é fundamental adotar práticas de manejo sustentável, como a seleção de variedades mais resistentes, a implementação de técnicas de irrigação eficiente e a conservação do solo. Essas estratégias ajudam a garantir a produção de feijão mesmo em condições climáticas adversas.

APLICAÇÃO PRÁTICA

Por ser uma prática com custo reduzido, a inoculação da cultura do feijão com Rhizobium tropici permite respostas positivas em ambientes limitantes, a exemplo de condições de sequeiro. Para alcançar boas produtividades a irrigação é indispensável para o cultivo de feijão de segunda safra na região Oeste Paulista.

LITERATURA CITADA

COMPANHIA NACIONAL DE ABASTECIMENTO (CONAB). Safra Brasileira de Grãos. Disponível em: https://www.conab.gov.br/info-agro/safras/graos. Acesso em 06 ago. 2024.

COELHO, L. G. F. et al. A inoculação do feijoeiro no Brasil: alternativas para aumentar a produtividade utilizando microrganismos promotores do crescimento vegetal. Documentos – Planaltina, DF: **Embrapa Cerrados**, 2021.

SANTOS, H.G. et al. Sistema brasileiro de classificação de solos. 3. ed. Brasília: Empresa Brasileira de Pesquisa Agropecuária, 2013. 353 p.